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We present results of numerical simulations of stably stratified, randomly forced 
turbulence. The selection of forcing and damping are designed to give insight into the 
question of whether cascade of energy to large scales is possible for strongly stratified 
three-dimensional turbulence in a manner similar to two-dimensional turbulence. We 
consider narrow-band wavenumber forcing, whose angular distribution ranges from 
two-dimensional to three-dimensional isotropic. Our principal results are as follows ; 
for two-dimensional forcing, and for sufficiently small Froude number, the 
statistically steady state is characterized by a weakly inverse-cascading horizontal- 
velocity variance field. The vertical variability of the horizontal-velocity field is 
pronounced, but seems to approach a limit independent of the Brunt-Vaisala 
frequency N, as N-+ GO. If, on the other hand, the Froude number exceeds a critical 
value, the vertical variability is weak, and the statistics of the scales larger than the 
forcing scale is near that predicted by inviscid equipartitioning. For all forcing 
functions considered the vertical motion and temperature field (w, T), centred a t  
smaller scales, are more three-dimensionally isotropic, with no large-scale organi- 
zation. At large N, (small Froude number) the w-field scales as 1/N, with 
horizontal motion field nearly independent of N. Furthermore, at large N and for 
horizontal forcing, the horizontal motion field is consistent with the condition that 
a substantial fraction of the total dissipation is attributable to an effective drag 
acting upon all horizontal scales of motion, which in turn flattens the slope of the 
energy spectrum in the inverse-cascade range, and increases it in the enstrophy- 
cascade range. 

1. Introduction 
The Earth’s mesoscale variability (in the range 10 to 1000 km) shows as horizontal- 

scale distribution (k-i) ,  whose physics seems to be a combination of strongly stable 
turbulence and wave motion. Gage (1979) proposed that the observed horizontal 
variability may be explained as an inverse-cascading two-dimensional turbulence 
whose physics is similar to that deduced by Kraichnan (1967) for strictly two- 
dimensional turbulence. In later papers (see e.g. Gage & Nastrom, 1986 for a review) 
they generalized the discussion to include quasi-geostrophic turbulence such as 
described by Charney (197 1). Lilly (1983) subsequently argued that strong 
stratification alone implies a dominantly two-dimensional motion. The argument 
relied on the earlier scaling analysis of Riley, Metcalfe & Weissman (1981). The 
energy source is at small scales in the range of large-scale thunderstorm activity. An 
inverse cascade then operates to distribute the energy to progressively larger scales. 
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We should stress that the motion here envisioned is not two-dimensional; its 
horizontal components (u, v) have vertical variability which is dynamically 
determined through dissipative mechanisms, which may involve breaking waves in 
patches of sufficiently low Richardson number. In addition an effective radiation 
damping of the wave component should also be introduced in order to properly 
represent the effects of waves exiting from the region of study. At the large-scale end 
of this region (lo00 km) the effects of rotation must undoubtedly play a significant 
role, and stratified turbulence merges with a Charney-type (1971) quasi-geostrophic 
turbulence. 

On the other hand, Van Zandt (1982) has argued that the observed data may 
be entirely explained by gravity waves. Van Zandt finds the atmospheric data 
consistent with an atmospheric adaptation of the oceanographic Garrett-Munk 
(1979) internal-wave spectrum. Of vital importance in distinguishing between these 
various proposals is the vertical variability of both the horizontal motion field and 
the wave field. 

In an effort to understand some of these issues, we examine here, via numerical 
simulations, strongly stratified turbulence. We focus on homogeneous flows, utilizing 
a spectral code of resolution 64 x 64 x 64 to resolve the velocity and temperature 
fields. Additionally, constant fluid properties are assumed. We also remark that 
although the motivation for the present investigation derives from the meteorological 
problem noted above, the problem examined here is of a purely fluid dynamical 
character. 

The equations of motion to be investigated are the Boussinesq set: 

- + K ( V ~ )  T = -Pw-u-VT+F,  G 1 
and v - u  = 0. (3) 

Here, P(> 0) is the constant horizontally averaged temperature gradient, a is the 
fluid expansivity, and is the unit vertical vector. The (constant) Brunb-Vaisala 
frequency is N = (-@)x. The quantities v(V2) or K(V2) represent hyperviscosity (or 
conductivity), whose form is (v,,K,,) V2 + (v2,K2) V4. Terms (v2K2)  are needed here to 
damp small scales, preventing possible accumulation of energy (or temperature 
variance) at the smallest resolvable scales. We are interested in homogeneous flows 
for which the collocation basis set 

exp (2ninx/L), n = & (0, 1, 2, . . .) 
suffices along each of the Cartesian axes (2, y, z).  Here, L is the periodic box length, 
which we set to unity for simplicity. We denote by the vector k the triplet-collection 
+2n(0,1,2, . . . ) /L ,  and take z to be the vertical. To solve (1)-(3), we use collocation 
with the above basis set. The time stepping is by the leap-frog scheme, stabilized by 
periodic averaging with Crank-Nicholson stabilization of large wavenumbers. This 
procedure has had ample discussion (Orszag & Patterson 1972 ; Riley et al. 1981 ; 
Curry et al. 1984). 

The present problem has both wave and turbulent components. For linear 
problems, it is clear how to distinguish between these degrees of freedom : take one 
component ‘along’ the gravity wave and the other orthogonal to the first component. 
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If incompressibility is included, these suffice to represent u(x, t ) .  These components, 
denoted here as ($1, $,), are conveniently represented in wavenumber space by 

and 

(4) 

( 5 )  

In  terms of these we may write u(k , t )  as 

uw, t )  = [(k x d)/lk x 211 $1 + [k x (k x t)l/lk x (k x t)l $2. (6) 

Gt(k) = ($?(k)$$(k)) ,  i = 1,2. (7a) 

Associated with $l(k), $,(k) are their intensities, Gl(k), GP,(k) : 

Here, the angular brackets denote an ensemble average. We also introduce the 
potential energy spectrum : 

P ( k )  = t (T*(k)  T(k)) / /3 .  ( 7 b )  
Following an existing terminology, we shall call the ‘turbulence ’ (or ‘vortical’ 

mode) and #2 the wave mode, despite the fact that for strongly nonlinear flows the 
identification of $2 with the waves and q51 with the ‘turbulence ’ is not justified. The 
components (dl, $2) were introduced into the study of internal waves by Riley et al. 
(1981) and Lilly (1983) as a convenient description of waves and turbulence. They 
also serve as an economical description of axisymmetric turbulence (Craya 1958 ; 
Herring 1974) without waves. 

To set the stage for the numerical study that follows, we sketch for a simple 
problem how it is consistent that horizontal motion may dominate (as N +  00)  by 
perturbatively estimating - in this limit - the intensity, G2 = ($z(k, t )  $2(k,  t ) ) .  
For this purpose, it is convenient to use the resolution (4), (5 ) ,  and (6) in the 
Navier-Stokes equations. In  the latter, we shall put F3 = FT = 0, and take (Fl,F2) 
two-dimensionally isotropic. We shall, moreover, take (Fl,F2) to be centred in a 
narrow band of wavenumbers at small scales, so that the forcing does not interfere 
with any possible inverse cascade. Under these assumptions, the activation source 
for $*(k) stems from the nonlinearity ($1, $1) in (1) and (2). Eliminating a, T from the 
set of equations for (a, $,, a, T )  then gives 

c E ( ~ , P ,  q )  $lw $l(q) + . . . . (8) 
k-pfq 

Here, E(k,p ,  q )  = iqe,(k). (el@) x e,(q)), el and e2 are the vector coefficients of q51 and 
q5, in (6), and cose = k-g/k. That dj2 - NP2 follows from (8) if the timescales of its 
right-hand side are of order N-l.  Note that the right-hand side of (8) pertains to the 
vertical (and temporal) variability of #l; it  is zero for static q5,, or for a strictly two- 
dimensional flow. 

Although the above discussion suggests a dominance of stratified turbulence at 
large N ,  all we may really conclude is that the initial rate of growth of the wave 
component is 1/N: the eventual t+00 state (far from the region of forcing) could 
be equipartitioning among independent degrees of freedom (the three velocity 
components and the potential temperature). Indeed, the application of statistical 
mechanical reasoning to the inviscid, unforced subset of (1)-(3) would lead to this 
conclusion. What may save the argument for the dominance of stratified turbulence 
as N +  00 is that dissipation may affect the stratified component differently than the 

(a: +P sin2 e) $2(k,  t )  = a, 
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wave component. We note, in this connection, that if the stratified component has 
a strong inverse transfer to large scales, its energy will be centred a t  small k and 
hence suffer relatively little dissipation, whereas the wave component, having no 
inverse transfer tendency, may be subject to stronger dissipation. 

We have suggested a two-dimensional dynamics for the regime N +  00 (through 
(8)), but the discussion is clearly incomplete since the statistics of the x-dependence 
of is undetermined. This question is also related to the vertical stability of the flow 
(in the sense of Richardson), and the constraint that its steady-state dissipation 
equals the energy input by F, We are as yet unable to see how an extension of the 
perturbation theory sketched above determines, in the statistically steady state, 
quantities like (u (x ,  z ,  t )  u(x, z’, t ) )  as functions of forcing. For this reason, and 
because the vertical variability is vital in any quantitative discussion of stratified 
turbulence, we focus on numerical experiments in which the forcing is strictly two- 
dimensional, so that any vertical variability is wholly attributable to nonlinear 
dynamics, and not to arbitrary forcing. 

In the atmosphere, the wave component exits the layer studied a t  the stratosphere, 
where wave breaking associated with a non-constant density gradient occurs. This 
provides an additional damping for the wave component. D. K. Lilly (private 
communication, 1986) has made a proposal to estimate this effect, within the confines 
of a homogeneous calculation. In  the present study, we shall subordinate this 
important empirical aspect of the problem in order to first stress the basic fluid 
mechanics. For suficiently strong stratification such damping may be unnecessary, 
since the wave component is in this case small. 

2. Some numerical results 
2.1. Statement of problem to be studied 

In order to have a reference case to which to compare our results, we consider first 
a two-dimensional flow randomly forced a t  small scale, for which we may 
demonstrate an inverse-cascade range a t  scales larger than the forcing wavenumber. 
Having found a suitable (two dimensional) forcing and dissipation, we then introduce 
a small three-dimensionalized perturbation, and allow the system to evolve to its 
stationary states. This two-dimensional reference problem has special features 
which should be noted. First, the total energy eventually increases without bound, 
if the lowest available wavenumber k, = 0 (Kraichnan 1967). For non-zero k,, which 
is our case, the flow stabilizes a t  a finite energy, but eventually may collapse into a 
near non-turbulent circulation with little transfer to large scales. Any useful analogy 
between stratified flow and two-dimensional turbulence can hold only during the 
inverse-cascading phase, prior to the collapse. As it turns out, and our numerical 
calculations support this picture, the rate at which the total kinetic energy increases 
is slow compared with the rate a t  which scales in the range (O.lk, < k < k,) assume 
their cascade-equilibrium shape (i.e. k-i). (Here, k, is the forcing wavenumber.) Hence 
we define our reference problem as the two-dimensional forced problem during that 
time span for which the inverse cascade is vigorous, and during which the energy 
slowly increases. 

For the present set of runs, the flow is forced by a two-dimensional Markov forcing 
of the (u, v)-fields on a wavenumber band 

(kB = 10 < k < 12 = kT). 
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I N V Y kf dt 

Run 1 1 - 0.005 16 11  0.000625 
Run 2 1 20n 0.005 16 11 0.000625 
Run 3 1 40n 0.005 16 11 0.000625 
Run 4 1 80n 0.005 16 11 0.0003125 

TABLE 1 .  Parameters of two-dimensionally forced runs 7 = 5, I = 1 ,  K = v (see (9)) 

It is non-zero only for the vertical wavenumber zero. We define k, = + [ k B + k T ] / 2  to 
be the centroid of the forcing wavenumber band. The forcing function F,(t) is Markov 
(in time), with no correlation between wavenumber vectors. As applied to each wave 
component of the field I(, F satisfies 

(E(Wqt7)  = W )  ( e l 4 e x p  (-7lt--t9Wz). ( 9 )  

The angular brackets represent an ensemble (or time) average. We do not force the 
temperature field. I ( k )  is quadratically distributed in k ,  vanishing a t  k,  and k,. 
Values of the integral I and 7 for the present runs are given in table 1 along with the 
' hyperviscosity ' v(k)  and hyperconductivity K(k),  written here in the form 

v(k)  = vo k2(1 + y ( k / k p ) 2 ) ,  K(k) = v ( k ) .  (10) 

Also given in table 1 are the forcing wave number k,, the time step, dt, and y, an 
adjustable constant entering (10). As noted above, the use of a hyperviscosity is 
necessary in order to attenuate spectra a t  large k ,  so that high-wavenumber 
truncation errors (near k = 32)  are small. We have further set k, a t  the rather small 
value (1  1 )  in order to keep the large-scale dynamics as free as possible of collocation- 
aliasing errors. 

After describing the two-dimensional solution, we investigate in the following 
sections the behaviour of the randomly forced system if submitted to a small initial 
temperature perturbation. We then explore the nature of the stationary state as the 
Brunt-Vaisala frequency varies. 

2.2.  Statistical features of the flow energies, variances, spectra, and distribution 
functions 

Figure 1 (a )  shows the curve of [ (u2 ) ,  ( v z ) ]  ( t )  for Run 1, a strictly two-dimensional 
flow with no vertical motion or temperature fluctuations. After the initial transient 
phase, these grow slowly and approximately exponentially. The spectrum 

t )  = i [ ( l U l 2 )  (k) + ( l V l 2 )  (k)l  = @,(k) (11) 

is shown in figure 1 ( b )  for t = 0.938. The inverse cascade for k < k,  is clearly visible, 
although the resolution here (643) is small by contemporary two-dimensional 
standards (2 12S2). Nevertheless, the slope of the spectrum for k < k, is close to k-3. 
Beyond t = 1, energy begins to accumulate significantly at the largest available scale, 
[ ( 2 n / k L ) ,  k,  = 11, and a time-step smaller than that in table 1 must be used to 
prevent the system from blowing up. 

We consider next, in Runs 2 to 4, what happens if a small random (Gaussian) 
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FIGURE 1. (a)  Kinetic energy as a function time t for Run 1 (see table 11, showing (w2(t)), and 
( v 2 ( t ) ) ,  where angular brackets denote volume average. The system is forced randomly, but only 
two-dimensional modes are activated (i.e. F =+ 0 only if k, = 0:  F,(t) = FT(t) = 0). ( b )  Two- 
dimensional energy spectrum E , ( k , t )  (see (11)) for Run 1 at t = 0.938. The histogram shows the 
totals of $[u2(k, t ) + v 2 ( k , t ) ]  for the wavenumber bins whose magnitude limits are (1,2, ..., 31). The 
arrow marks the beginning of the range of strong viscous dissipation (i.e. v(k) > [k3E(k)$, see 
(10)). 

temperature perturbation is introduced a t  t = 0 and N is progressively increased, as 
indicated in table 1. The perturbation spectrum is 

( T ( k ) T ( - k ) )  = Ck4exp(-2(k/k,)2), 112) 

where C = 1 x 
velocity field variance 

and k, = 4.760. Figure 2 shows i ( (uz)  (t), (vz) (t)), the vertical 

= t (w2> ,  (13) 

and potential energy W )  = KP)/P (14) 

for the range of N (up = P) given in table 1.  We note the initial exponential growth 
of &(t) and P(t). The rate shows no discernible dependence on N .  Wave activity is 
manifest only during the initial, linear phase. Apparently (w, T) evolve as a linear 
wave for a short time before the shear in the horizontal motion field induces an 
instability which returns the system toward isotropy. The 'return to isotropy rate ' 
during the initial phase is well represented by the empirical formula 
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t 

FIGURE 2. (d) ( t ) ,  (wz) ( t ) ,  vertical variance energy &(t), and total potential energy P( t ) ,  for Run 
2. Temperature at t = 0 is as specified by (12), and w(k,  0) = 0 for N = (20a, 4oa, 80%). Notice the 
slow exponential increase of E,(t) until E,(t) and P(t )  near their saturation level, after which the 
system approaches statistical equilibrium. 

Here, @yt is the total (wave-vector sum) of the @,(k) field (see (7a) and (4)). The 
equilibrium value of E, is in rough accord with the scaling arguments of equation (8) 
(I& - W2).  E,(t)  is smaller than P,  a result of the strong vertical variability that 
ensues at large N .  

Spectra for Qi,, Qi,, and P are shown in figures 3-6. We show here isotropically 
accumulated spectra (figure 3) ; vertical wavenumber (k,)  spectra (figure 5 )  ; and 
horizontal wavenumber (K,) spectra (figure 6) for the three values of N = (20n, 40n, 
80n), respectively. Figure 4 shows R,(k), the intensity of the second spherical 
harmonic of @,, Qi,, and P(k, t ) .  These are defined by 

where Pa@) is the nth Legendre polynomial, and !P stands for (O1, @, or P). 
Examining first figure 3, we see little evidence of inverse cascade at N = 20n (the 

solid lines). In fact, the spectrum below k, is not too dissimilar from inviscid 
equilibrium, - k2, except a t  the lowest available k -  bin. For N = 2 h  the R,-har- 
monk amplitude as shown in figure 4 (see (16)) is mildly two-dimensional (R, < 0)  
for @,(k), with moderate vertically variability for @, and P .  (For isotropic fields 
R, = 0, and for strict two-dimensionality (no k, dependence) R ,  = -8.) At the same 
time, figure 3 shows that for N = 20n, @, and P remain in close equipartition over the 
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full spectral range (as we shall shortly see, this equipartition holds only for N 5 2 0 ~ ) .  
As N increases, a spectral bulge develops near k x 5, the R,-spectra for 0, becomes 
saturated at  extreme vertical variability (R, = + 1) at  roughly k = 5.  An examination 
of the higher P, harmonics shows that these, too, are saturated, which implies an 
angular distribution close to S(lp1- 1) : thus the variability in the range (4 < k < 8) 
is almost entirely k,. Note that @,(k) and P ( k )  spectra both decrease in accordance 
with the comments following (8). 

We turn now to the vertical wavenumber spectra (figure 5 ) .  We note a striking 
increase of vertical instability in the region (k ,  > 5 )  as N increases beyond 20x. This 
abrupt increase in variability suggests that a stability threshold is crossed. Once 
crossed, little change in the spectrum G1(k , )  (in either shape or intensity) is noted. 
These @, spectra for k, 2 5 are not inconsistent with a k i 3  law. However, they do not 
scale as P k g 3  (as would be the case were the energy spectrum determined exclusively 
by N ) ,  but become independent of N ,  if Runs 3 and 4 indicate the trend as N +  a. 
Note that P ( k , )  for the two larger values of N are nearly equal (for k, < 1 I),  despite 
the fact, as noted above, that P ( k )  progressively decreases with increasing N .  Neither 
P ( k , )  nor Q),(kz) show power-law behaviour a t  large k,, although the range of scales 
considered here (0 < k, < 31) is probably too small to discuss this issue adequately. 

An interesting but unanswered question here is why the @,(k,)-spectrum drops 
rapidly for k, < k: = 5. This value of k, sets the number of vertical layers, whose 
thickness A x ( l / k : )  could possibly be affected by the presence of the low- 
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FIGURE 4. Second angular harmonics R,  (see (16)) for fields Dl(k) ,  DP,(k), and P(k) ,  
andP,N=20x;---- ,40rr; . . . . . ,  8On. 

wavenumber cutoff, k,, but is more likely determined by dynamical considerations. 
The fact that G1(k2) has a non-exponential slope at small k 2 ( k 1 3 ? ) ,  followed by a 
dissipation range (see figure 5a) suggests that A is not simply determined by purely 
dissipative effects. Fernando (1988) has proposed, for freely evolving turbulence, 
that A is several Ozmidov (1965) lengthscales. However, we note that for the present 
forced problems the Ozmidov scale (2x /k0 ,  ko E (P/E);) is much smaller than the 
layer thickness (k, x 80, for N = 8 0 ~ ) .  Moreover, A seems insensitive to N ,  according 
to figure 5.  Perhaps more plausibly, in our case A is determined by the condition that 
the frictional effect of the layering balances the input of energy by random forcing. 

The stability issue mentioned above is presumably related to a suitably defined 
Richardson number for the flow. For the present problem, the definition 

Ri = P/( (i3~/i3z)~) (17) 

Fr = (u2)i/Li?, (18a) 

seems plausible. It is also useful to have a dynamically defined Froude number, 
which we take to be 

where 
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Run Rik Fr 

2 1.02 0.387 
3 2.02 0.884 
4 4.06 0.197 

TABLE 2. Froude and Richardson numbers (see (18) and (17)) 

is the vertical integral scale for $I. Note that (17) and (18a, b)  differ in that Ri is a 
microscale quantity, whereas Fr is a macroscale quantity. Table 2 lists Ri and Fr for 
the three runs discussed here. The variation of Ri here is consistent with the idea that 
N = 20a is unstable with respect to vertical overturning, whereas N = (40a,80x) are 
not. The value of Fr for Run 3 is anomalously large: the value of L entering its 
definition (18b) has abruptly become smaller because the flow has made a transition 
to a layered state on going from Run 2 to Run 3. 

We consider in figure 6 two-dimensional spectra, functions of K,, 

K ,  = (k:+ k i ) f .  

The spectrum @(K,)  is the quantity to  which to compare the two-dimensional results 
shown in figure 1 ( b ) .  We note a slight inverse cascade for G1(K,) for N = (40a, 80a). 
The peaks in these spectra a t  k, are, of course, attributable to the forcing in the band 
of wavenumbers centred at k,. However, unlike the two-dimensional flow, which has 
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a hearty inverse cascade, as shown in figure l ( b )  (for the same forcing and 
dissipation), the present system is unable to transfer effectively our of the forcing 
region. Again, in the wavenumber range k < k, the QS, spectrum seems to saturate, 
with little significant change on passing from Run 3 to Run 4, as N doubles. For 
K ,  > Kir, however, the spectral slope increases with increasing N .  

It is of interest to examine the various energy fluxes into GI, QS,, and (\TI2). This 
is conveniently done by introducing the transfer function, Y ( k ,  t ) ,  defined such 
that 

t ,  3 <(k, t )  - 2v (k2)  a i ( k ,  t )  + (k',(k, t )  QS:(k, t )  +F:(k, t )  @,(k, t ) ) .  (19) at 

Here, as before angular brackets stand for an ensemble average. In practice, we 
replace the ensemble average with a wavenumber-band average over a group of 
statistically equivalent k : in our case, an average over the direction of axisymmetry, 
and a shell average over discrete radial wavenumber bins. The first of these, applied 
to (19) suffices to make the time derivative zero if the flow is statistically stationary. 
We may further analyse 4 into contributions from vortical-vortical (vv), 
vortical-wave (vw), and wave-wave (ww) contributions. (Recall that by vortical, we 
mean simply dl;  and by wave $,.) The Y ( k , t )  for QS1(Kl,t), for example, is 
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FIGURE 7 .  Transfer function for djl(K1) (see (20)) : -.Yvvv, ---YvWv, . . . . . 

(a) N =  OX, ( b )  N = 8 0 ~ .  

where the first subscript tags the vortical mode, and the remaining (vv, wv, or ww) 
signify the interactions between vortical-vortical, wave-vortical, or wave-wave 
modes that feed energy into the vortical mode. Fv is shown in figure 7 for Runs 2 and 
4. We note, overall, a dramatic reduction in Fv(k) on passing from Run 2 (N = 207~) 
to Run 4 (N = 807~). The strictly two-dimensional terms (vvv) for both runs 
(especially Run 4) resemble a two-dimensional forced energy transfer function. 
Among terms contributing to Fv(K,), vww is smallest, and becomes relatively 
smaller as N increases. On the other hand, vwv (the wave-vortex interactions) drain 
the stratified turbulence with the same intensity as the vortex-vortex interactions in 
the forcing-wavenumber region. This is true for both runs, suggesting that near the 
forcing scale, the wave component cannot be neglected for any N .  At small K,, there 
is a significant transfer of energy into G1(KL), which must be balanced (in the steady 
state) by viscous effects alone, since all other transfers are small. 

Another interesting statistical aspect of the flow is the probability distribution 



Numerical experiments in forced stably stratijed turbulence 109 

-400 -300 -200 -100 0 100 200 300 400 

a u p z  

FIGURE 8. Differential distribution €unction for r = au/at for (a) N = 0, (0) 20n, 
( c )  80n (runs 1, 3, 4). 

function, S ( x ) ,  that some flow property x (=  a velocity derivative, etc.) lies between 
x and x + dx. We discuss here two such distributions : that for au/az = x ,  and the 
helicity, x = u -  (V x u).  The first may aid in assessing the statistical stability of the 
flow against vertical overturning. We consider first x = au /az ,  as shown in figure 8, 
for N = (0,2071, 8071). As N increases, the cores of these distributions decrease, with a 
corresponding increase in the wings. An interesting feature here is that, especially for 
small N ,  the wings have a significant exponential range (i.e. Y ( x )  - exp (-&I) ) .  For 
N+O,  such an exponential distribution holds over the range 100 < 1x1 < 300, during 
which S decreases by about three orders of magnitude. Similar results have been 
found in other contexts; for example the shear-flow experiments of Anselmet et al. 
(l984), who find exponential distributions for structure functions, and the quasi- 
geostrophic turbulence simulations of MeWilliams ( 1989), who observes a similar 
behaviour for the potential vorticity distribution. Our results here differ from those 
of MeWilliams in that ours do not show an intense central core, as do his. The latter 
behaviour is an indication of strong intermittency . 
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FIGURE 9. Differential distribution function for helicity H = u. (V x u)  for N = 0 (- - - -) ; 
20n (-); $01~ ( . . * . . ) .  

The helicity density is defined as 

H ( x ,  t )  = (u (x ) *  (V x u ( x ) ) .  (21) 

Its volume integral is an inviscid constant of motion. Several recent numerical and 
theoretical studies (Kerr 1987; Pelz, Shtilman & Tsinober 1986; Levich & Tsinober 
1983) suggest that the Navier-Stokes dynamics is such that regions contain little 
dissipation. To examine this issue, it  is customary to invoke a conditional distribution 
S(&f), defined as the probability that y is in ([,[+d[) on condition that some 
quantity, for example a locally defined dissipation 6 = D ( x ,  t )  = +[aui/i3xg + i3uj/Clxtl2, 
does not exceed a fraction f of its spacial average value. Pelz et al. (1986) chooses 
f = 0.001. Figure 9 shows S ( x  I f )  for N = (0,20x, 80x) ,  and for f = 1.  We pick f = 1 
since there now appears to be a reasonable doubt that strong helicity inhibits 
dissipation (Kerr 1987). For N = 0 (dashed line), P ( x l f )  is somewhat peaked a t  
1x1 = 1. A sharply peaked distribution would correspond to intrinsic stability of 
structures for which u parallels V x u. We should remark, in this connection, that 
S ( x  = a-b/la 1 bl) = 1/4x, if (a, b)  are Gaussian, uncorrelated, random three- 
dimensional vectors. We have further confirmed (numerically) that S ( x )  is quite flat 
if Gaussian (incompressible) u is used. For strong stratification, however, (solid line, 
N = 20x ; dotted, 4' = 80x) we observe the converse : u and V x u tend to be more 
nearly orthogonal. We have observed a similar behaviour in thermal convection : in 
both problems the buoyancy torque which drives the vorticity is orthogonal to the 
induced motions (w). For the present problem, however, the basic flow induced a t  
large N is two-dimensional, and the condition u orthogonal to V x u is expected 
intuitively although the vertical variability of the horizontal motion field does give 
rise to some horizontal vorticity aligned with uI. 
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FIGURE 10. Isosurfaces of u(z, y, z, t )  (2-component of u ) ,  during stationary phase of the flow, 
for N = 8 0 ~ .  

FIQURE 11. Vector plots of u(z, y, z, t ) ,  N = 80n: for (2, %)-slice at  the midplanes of the flow. 
Flow is statistically stationary. 
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2.3. Spatial structure of the flow 
Figure 10 shows isosurfaces of the horizontal motion field, u(x, y,z,t), during the 
fully developed state of the turbulence, for N = 807~. We note complicated three- 
dimensional wave-like features despite the relative smallness of the vertical velocity 
field. The fact that this flow consists of six layers (as noted in our discussion of the 
k, spectra) is clearly visible. This observation is reinforced in figure 11, which shows 
a vector plot of u for a vertical slice of the flow. The dominance of the horizontal 
motion is clear; it is, in fact, very nearly rectilinear. For N = 20n, the flow is more 
nearly three-dimensionally isotropic. 

3. Conclusion and interpretation of results 
We have described here a sequence of randomly forced, homogeneous flows, of 

progressively increasing (stable) stratification. If N is large enough to stabilize the 
flow, a further increase of N increases the two-dimensionality of the flow. But such 
a flow is in horizontal layers, whose thickness is set by the condition that the 
dissipation of kinetic energy input to the flow be attributable to the dissipation 
caused by the vertical variability of the horizontal flow. The condition for the onset 
of a stable layered-flow regime seems to be that the local Richardson number - based 
on the r.m.s. au/az - be larger than unity. This stabilizes the flow against both shear 
and buoyant overturning (Smith, Frittz & Van Zandt 1986). The wave component 
of the flow becomes progressively attenuated, with amplitude - N-l.  Its  spectrum is 
quite flat and tails off only because of dissipative effects, suggesting sharp wave 
fronts. Our results on this point are similar to the findings of Farge & Sadourny 
(1989) for two-dimensional shallow water waves. The amplitude of the wave 
component is consistent with the simple estimates of $2.  The above conclusions are 
- of course - based on the assumptions (see, e.g. $1) that the large-t behaviour of the 
stratified flow (with forcing) recorded here is asymptotic. 

The initial conditions of the numerical experiments consist of a two-dimensionally 
forced flow, upon which a small random temperature perturbation is introduced. The 
perturbations so introduced initially grew exponentially and were quantitatively 
consistent with the (N = 0) two-point-closure analysis (Schumann & Herring 1976). 
A surprising feature of these experiments is that  the growth rates were independent 
of N .  It may be that the linear phase of this problem can be understood as an 
instability of near-static two-dimensional vortices. Recently, Pierrehumbert (1986) 
and Bayly (1986) considered the stability of an  isolated, elliptical vortex. They found 
a universal instability, whose growth rate is approximately linear in the ellipticity 
and proportional to the (constant) core vorticity. The connection of their analysis 
with the present numerical analysis is made tenuous by the time-dependence of the 
randomly forced field, and by the presence of a multi-vortex field with their 
associated distribution of ellipticities. We have examined horizontal slices of the 
w-field to see if the characteristic flow patterns discussed by Pierrehumbert were 
present, but with inconclusive results. Another work bearing on the present is that 
of Yakhot & Pelz (1986), who examine the stability of forced, two-dimensional flow 
against long-wave secondary instability. It may well be that such an instability also 
participates in the eventual transfer of energy to large scales for the present problem ; 
however, Yakhot & Pelz consider special forcing functions (the so-called ABC-forcer 
and a purely vertical forcing function). This again makes comparisons difficult. 

Our results indicate a degree of inverse cascade to large scales, but not yet a k-c 
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range (the numerical results are more like It-;). We note an appreciable accumulation 
of energy near the forcing wavenumber, and an associated wavevortex interaction 
transferring (two-dimensional) energy into waves. Thus the two-dimensional forcing 
used here invokes a three-dimensionality (in the neighbourhood of the forcing 
function) through the instability discussed in the previous paragraph. This is in 
spite of the fact that the stratification is so strong that the Ozmidov wavenumber, 
ko = ( P / e ) ;  is larger than the high-wavenumber cut-off (kH = 32, k, x 80 for 
N = Son). In the neighbourhood of the forcing (perhaps a factor of 10 is the scale on 
either side of the forcing wavenumber, if turbulence theory is any guide) we expect 
ideas of inverse cascade to be vitiated. For this reason, it may be that higher 
resolution will allow a potential k-i range to emerge. On the other hand, it may be 
that a more judiciously chosen forcing function (one that does not excite so strongly 
the gravity-wave component near k,) would be more conducive to inverse cascade. 

We have suggested that the dissipation for large N is attributable to an equivalent 
friction between the layers, as observed in figures 10 and 11. This implies that the 
dynamics of the large-scale range is not purely inertial, but contains an appreciable 
frictional component. We may verify via turbulence theory, as decribed in Lesieur 
& Herring (1985) that such friction will indeed lessen the slope in the ‘inverse- 
cascade ’ range, and steepen it in the enstrophy-cascade range. 

Concerning the issue of the necessary numerical conditions for inverse cascade, we 
should sound a word of caution. Our computations here are 643 in resolution, 
strongly forced, with a rather large hyperviscosity (y = 16) needed to  attenuate 
spectra a t  large k. They are in addition pseudospectral. Under these conditions, the 
resolution may not be sufficient to examine, quantitatively, issues of inverse cascade. 
For example J. C. McWilliams (private communication) finds (for two-dimensional 
turbulence) little evidence for inverse cascade with the collocation method (pseudo- 
spectral) even if there is no high-wavenumber accumulation in the spectra. He 
observes that only if he employs the Galerkin method is inverse cascade restored. 
This information adds to the reasons for increased resolution. 

We have also examined, briefly, certain distribution functions for the flow, in 
particular that for vertical shear, and the helicity density. For large Ri (small N) the 
distribution function for shear has a significant exponential tail, as has been observed 
in another context (Anselmet et al. 1984; McWilliams 1989). This is an interesting yet 
unresolved generic aspect of turbulent flows. For small Ri (large N ) ,  i.e. those 
calculations having significant inverse cascade ; see e.g. figure 8) a surprisingly small 
amount of shear occurs above N .  This is consistent with the fact, discussed above, 
that dissipation is attributable to vertical shear, almost exclusively. It should be 
noted that the dissipation range found here for large N is strongly anisotropic. The 
helicity distribution suggested that, for stratified turbulence, regions of high helicity 
were not as significant as for other homogeneous flows previously investigated. Our 
results are, in this respect, similar to those of Rogers & Moin (1986), who find that 
the presence of a mean strain (or shear) reduces the importance of helicity behaviour 
(see their figures 5 and 7)  from a modest favouring of helical structures for 
homogeneous flows to a preference for u l ( u  x Vu). However, we have not investigated 
at all here the issue of whether a helical ‘burst’ of short duration may play a 
significant role in the energy transfer of stratified turbulence. 

We are grateful to K.  S. Gage, J. C. McWilliams, and J. J .  Riley for many 
enlightening discussions. The basic numerical code was written by S. A. Orszag, and 
we are grateful to him for advice and discussions on implementing the code. S. 
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Supercomputer Center. Computing resources were supplied by a grant from the 
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